
PMX U.S.S.R., Vol. 46, No. 5, pp. 658-666, 1983. 

Printed in Great Britain. 

ON QUASIPERIODIC BOUNDARY VALUE PROBLEMS 
AND THEIR APPLICATIONS IN THE THEORY OF ELASTICITY* 

E.L. NAKHMEIN and B.M. NULLER 

The fundamental boundary value problems of analytic function theory are considered 

on certain systems of contours possessing translational symmetry: the Riemann 

problem on an oblique lattice of arbitrary contours, the Hilbert problem and the 

mixed problem for a half-plane, the Dirichlet problem for a plane with a periodic 
system of slits on a line. In contrast to /l/, where the listed problems are solv- 
ed under the condition of periodicity of their coefficients and free terms, this 
condition is here imposed only on the coefficients. By applying a discreteFourier 
transform and periodicity of the boundary conditions for an elementary cell, the 
formulated quasiperiodic problems are reduced to periodic problems and are solved 

in closed form. The results obtained are used to solve (in quadratures) new mixed 

problems of elasticity theory in translationally symmetric domains with nonperiodic 

boundary conditions. 

1. The Riemann problem. In the plane of the complex variable z = s + iy let a system of 

smooth contours L,, k = 0, +I,... be given that possesses one-dimensional translational sym- 

metry with the basis vector 0 = ol+io,, the motion of the plane a quantity w transforms L, 

into L,,,. The strip ) &(+E) 1 <I’:% Ic.01 of width [w\ with slope 5 = arg w,measured counter- 

clockwise from the z axis is selected as the elementary cell Q,, and Log1 Q,. Find the solu- 

tion of the Riemann boundary value problem /l/ 

a+-Go-(t)+g(t); MEL, L=,=! ~~ (1.1) 
co 

for a piecewise-analytic function 4)((z) decreasing at infinity under the assumption that 

G(t + CO) = G(t), G(t) # 0, t s L, (1.2) 

and that the functions G(t) and g(t) satisfy the Hi;lder conditions ZZi and H,, respectively. 

The conditions Hnrand H, imposed on the function f(t) are understood to be the conditions (n-l 

is an integer) 

H.w : f (t + Mu) = f (t), I f (td - f (td I -C A I h - t, Ii 

H,:Jf(t,)--(t,)(<A,It,--t,Ih; tl,tzE.&, k=O,fl,... 

,j$ -%<A m 

Problems of this kind with the periodic coefficient G(t)and the arbitrary free term g(t) 

will be called quasiperiodic. 
We introduce the discrete Fourier transform of the function f(z) in the form 

f*(z tso,d= x f(t+m+ko)e-*Q, 2 E Ra (1.3) 
km-e, 

s = 0, *I, . . ., q E [O, 2nl 

According to the theory of Fourier series, the inVerSiOn formula 

f (z + so + ko) = -&- 7 f* (z + so, tp) eikq dv; 

0 

ZEPo, k=O,$-I,... 
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holds at those points z where the series (1.3) converges uniformly with respect to cp in the 

interval [0,2nl. 

Hence, setting k ~0, we obtain 

il 

f(z+za)=& f*(z+z%cp)& 
5 

z6EQa (1.4) 

a 

The identity 

follows from (1.3). 

f* (2 + so, cp)=+V, (z), zEE&, 6=0,&l,... (1.5) 

We assume that the sum of the series (1.3), comprised of piecewise-analytic functions 

f(z) = O(z) is piecewise-analytic, and its limit values on L, satisfy the relationship (1.1) 

for the transform. Then because of applying the transform (1.3) to the problem (l.l), the 

following boundary value problem for the strip 8, occurs in conformity with (1.2) (the para- 

meter cp is omitted): 

(De+ (t) = G (1) @p,- (1) + g, (t)> t E -L (1.6) 

@* (z $ 0) = eieO,, (z); z E {Re (zd) = - I/% 10 1) 

where the functions G(t) and g+(t) satisfy the condition HI on L,. The second condition of 

(1.6) is obtained on the boundary of the strip QO from the condition of continuity of the 

function U)(z) on the total boundary of the adjacent strips 8, and &+I, k = 0,-f!,... by using 

(1.5). It shows that the problem (1.6) is not periodic in the plane. However, this problem 

can be made periodic by making the substitution /2/ 

@* (z) = ear Q,(z), a = icpo-' (1.7) 

The solution of the appropriate periodic problem 

@,o+ (t) = G(t) CD,- (t) + e+' g, (t), t E -& (1.8) 

CD, (z + 0) = a0 (z), z E (Re (ze+) = -Vz 1 0 I} 

is constructed by the method of F.D. Gakhov. Let .&=LlJ&. . . u LkNl where L cn is a simple 
open or closed contour, x,, is the index of the coefficient G(t) in L, in a given class of 

piecewise-analytic automorphic functions @,(z),Px(t) are polynomials of degree x with the 
coefficients C,,=C,(cp). We then have (/l/, Sect.43,52) 

(1.9) 

where b, is a finite point of the open and an arbitrary point of the closed contour L,,, and 

the chosen branch of the function X(z) corresponds to the condition lim ?L+ X (U.) = 1. Ul = ~$2 --f 
Co. 

Now, the solution of the problem (1.1) in the class of piecewise-analytic functions de- 

creasing at infinity can be found from (1.4), (1.7), (1.9). Taking the periodicity of the 
function O,,(z)into account, we obtain (zE&,) 

2x 

aqz+m,=qq [S exp (fit - a* + az + $8) g, (1) dt 

0 (P - P) x+(t) 
+ eaz+wsp 

0 I” 

x-1 w)] 4 (1.10) 

If commutation of the order of integration in t and cpis allowable, this expression simp- 
lifies to 

g (t + km) 
t-z+(k-s)o 1 

e=*+‘uqPx_, (8’) dcp) 
0 

(1.11) 

with 
tion 

Here the transform 8* (t), written explicitly in the form of a series in k, is integrated 
respect to 9. If this series diverges, then by weakening the requirement on the func- 
g(t) and changing the course of the solution, it is expedient to interchange integration 
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with respect to t and summation with respect to k; the summation sign with respect TV,, /C i:ii:l 
always be extracted from under the integral sign by the same means. 

Indeed, let the function g(t) satisfy the condition Ff,without constraint on .L, and .t~t 

it have algebraic growth with respect to t, for example. Then condition F(, is satisfied in 
the problem (1.1) with the free term g,(t)=g(t)&,,t E Lk, where 6,, is the Kronecker delta. 
The appropriate solution (1.10) can be called the Green's r-function of the initialprob;em 
(1.1). Summing the s-functions with respect to s between --03 and co, we obtain the solution 
of the problem (1.1) in the form (1.10) with interchanged summation and integration signs. 

The procedure mentioned is applicable, in particular, when the free term is a periodic func- 
tion of the form g(l+ .Ifo) = g(t) that satisfies the condition Hw. However, in this case 
there is a simple solution based on replacing the discrete transformation 11.31- il.51 by the 

finite transformation 

M-1 

f* (z -f so) = c f (z + so + ko) e+v, 2nm 
'P=7 (1.12) 

M-I 

f(z~m+ ko)+- Is f, (z + so) eih‘v 
m=o 

f*(Z+SO)=P~.f*(z); ZE.Ql, m,s=O,l,...M--l 

Repeating the previous discussion, it can be confirmed that this solution is analogous 

to (1.10) and has the form 

(1.13) 

The quantities 'p and g,(t) are evaluated by means of (1.12), while the function g(z)cor- 

responds to the condition of decreasing function a(z) as .z-+co. 

An especially interesting case in the Riemann problem (precisely that which is examined 

in Sects.2,4-7 1 is when o =2x, the coefficient of the problem is a negative number, G(t)= 
- G, G > 0, b,, is a set of segments of the real axis aknbtn, aol < b,l< . . . < box. In this 

case, we have x, = 1, x = N /l/ in the broadest class of functions o,(z) which are unbounded 

and integrable near all the endpoints a, =a,, and b, z b,, . Hence and from (1.91, there 

follows 

il. 14) 

Of great interest for hydromechanics problems /3/ is the case in which the function m,(z) 

is integrable at the points a, and is bounded at b,. Then x = 0, according to (1.9) 

X (z) = fi tei* _ eio,,)-1/2++f teiz _ elbnj’lriY 
(1.15) 

“Zl 

The singularities of the function a,,(z) on the contour L, are generally conserved even 

at the appropriate points L, in the solution 0 (2). However, in the class of functions de- 

creasing at infinity the inhomogeneous Riemann problem (1.1) also admits of a solution bound- 

ed at all points b kn, and the points akn at some S. As usuall, this will be possible 

when selecting the function X(z) in the form (1.15) if the function g(s)satisfies S addition- 

al integral conditions. Following the known approach C/l/, Sect.441, for an arbitrary contour 

L,, the function X(Z) can be represented in the most general form 

X(z)= efiz)(eoL + l)-x (1.161 

Excluding (1.131, the solutions constructed are not strict since the passage fromproblem 

(1.1) to (1.6) is made formally. 
Two paths can apparently be chosen to give it a foundation. The first is associatedwith 

utilization of some analog of the Weierstrass theorem about the analyticity of the sum of a 

series comprised of analytic functions; the conditions of the theorem itself, single-value- 

dness of the domain Q,\L, and unform convergence in z in &,\L,, are not satisfied here. The 



second path is based on uniqueness theorems. Utilization of analyticity of the transform 

m (~1 in deri --• \-I --- ~~- ving (1.9) results generally in narrowing the class of allowable solutions of the 

problem (1.1). However, if this problem has a unique solution, or if the uniqueness theorem 

is proved for the boundary value problem of mathematical physics akin to (l.l), then the solu- 

tion of (1.10) will be general in the firstcase, and sufficient to SOlVe the appropriate 

physical problem in the second. Uniqueness of the solution of elasticity theory problems for 

translationally symmetric domains can be proved by the traditional Kirchhoff method by con- 

sidering the system of partial domains %N u %N+I..- u cdN with a growing number of 2Nfi cells 

and giving the specific behavior of the solution at infinity. A new approachtothis problem 

is developed in /4/. 
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In formulating the problem (l.l), and also in the subsequent boundary value problems and 

examples, it is assumed that their solution decreases at infinity. Solutions different from 

zero at infinity can be constructed by adding the purely periodic problems considered in /l/ 

and the work on elasticity theory mentioned below, to the solutions obtained. 

2. Pressure of a system of stamps on an elastic half-plane under total 
adhesion conditions. As an application we examine the problem of the pressure on an 

elastic half-plane y&O, which is periodic with period 2n, for a system of stamps loaded 

arbitrarily and adhering completely to the half-plane boundary y=O at a set of L segments 

L,, : [a, + 2 kn, b, + Zknl, n = 1, . . ., IV, k = 0, -Al, . . . . The boundary conditions have the form 

(u + iv) (5 - i0) = q (x) + r (z), .r 63 L 

(0" - ix,,) (x -iO) = 0, x E L' 

(2.1) 

where L’ is the continuation of L to the real axis, the function q(z) = q1 (z) + iq, (x), belong- 
ing to the class H, determines the adhesion condition and the shape of the stamps, the piece- 

wise-constant function r(Z)= r knl+ irk,*,sELkn determines the nature of the connectedness of 

the stamps. 
The problem (2.1) whose solution we seek in the Muskhelishvili form 

(Uy - iTvy) (2) = @,I (2) - @I (2) + (Z - z)G) 

2).l (u' + S)(Z) = (3 - 4v) @i (Z) + @r (I) - (2 - i) @r'(z) 

(2.2) 

where the prime denotes the derivative with respect to X, v is the Poisson's ratio, u is 
the shear modulus, is reduced /5/ to the Riemann problem (1.1) for the function 0((z) = @r(z), 

where G(x) = 4v - 3, g(z) = 2uq' (x). 
Let the function q(x)be representable as the sum of functions belonging to H, and H,,p. 

Then the solution is written, respectively, as the superposition of the solutions (1.101, 

(1.14) and (1.131, (1.14). There remains to find the coefficients C, of the polynomials 

pN_1 (e"). 
We consider the two extreme cases: a) all the stamps are rigidly interconnected, b) 

all the stamps are displaced independently without rotation, under the action of normal Ykn 

and tangential X,, applied forces, whose transforms exist in the sense of (1.3) or (1.12). 
If the system of forces X._,,Yk,, is periodic with period 2n.li, then it should be self-equil- 
ibrated in this period. Conditions (2.1) for the displacements 

4, n+l 

(U + iv) (akn - io) = s (CL’ + id)(t) dt + q (6,,) + rk,, (2.3) 
%" 

should be satisfied in both problems a) and b). According to (2.2), we have 
(u' + iv')(x) = 211-l (1 - v) 0 (5). r E L’ 

Hence, and from (2.1) and (2.3), it follows (k=O,+l,...; n==l, . . . . N) 
“VI+1 

4 cm. n+,) -L n. nil = 29 (1 - v) 1 Q, (t +- 2nk) dt 4 q (br;,) + rkn 
b, 

(2.4) 

Applying the transformation (1.3) or (l.it!r to this system, we obtain 

9* (a,,+,) - r*,tl+r =$-'(I - v) 1 o*(t) dt I- q,(b,) -. r** 
%I 

(2.5) 

where n = 1, . . . . A\', the function Q*(t) is determined from (1.7), (1.9), (1.14), according to 
(1.5) and (1.12) for n = N the following notation and equalities must be used 

aNr,=xi + ?n, r*, Ni = elwr*l, h (“N+l) = e’% (adj @,* (4 = e’c0, (t - Zn), t E [n, al + 2.71 
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By definition rk,, -= r = const in problem a), hence the coefficients C', are found from ihe 
system of N equations (2.5) for r+,, = 0, n = 1,.. .,N. 

The c,, in problem b) are determined by the equilibrium conditions 

bkn 

J* (OY - 
lT%Y) (t) dt = Ykn - ix,, (u = 1, . . , N, k = 0, &- 1, .) 

which after transformation by (1.3) or (1.12) and utilization of the formula 

(cy - ir,,) (z) = (3 - 4v)_' [2pq’ (5) - 4 (1 - Y) CD+ (I)], ZE L 

go over into the system of Nequations 

b, 
4(1-v) 
4v - 3 s %+ (t) dt + -$& [Q* (h) - Q+ (%)I = Ye, - ix,, 

% 

The constants rh.* are found from the system (2.5) by the inversion formula or by the 
recursion formulas (2.4), where r,,r = 0. The periodic problem (2.1) is solved in /6/. 

3. The Hilbert problem for a half-plane. Find the function F(z)decreasing at 
infinity, which is analytic in the half-plane y>O and continuable continuously at it5 
boundary y= 0 except, perhaps, at given points CC = d, + 2nk, y = 0 (ldn 1 < n, n = 1, . ., 2N; 
k = 0, L- I,...) at which this function should be integrable by the boundary condition 

a (z) Re F (z) + b (.c) Im F (5) = c (I), x E (- CO, 00) (3.1) 

Here a(z), b(x) are real functions satisfying the condition Hl(o = 2s) with the except- 
ion of points 5 = d,,, where discontinuities of the first kind are allowable, az(x)+ b*(z)# 
0 for ZE[--TC,~J; and c(x) is a real function belonging to the class H,. 

According to /7/, the solution of the problem (3.1) has the form 

F (z) = ‘I2 la, (z) + G(z)1 (3.2) 

where Q(z) is the solution of the Riemann problem (1.1) on the whole line y=O, where 

G (x) = - a (2) + ib (+) 2c (t) 
n (2) - ib (I) ’ b?(x) = a (2) - ib (3) (3.3) 

Therefore, the solution of the problem (3.1) is expressed by (3.2) and (1.10) or (1.131, 

where L, is the segment I- n,nl, the function X(z) can be calculated at the points d, by 

means of (1.9) or (1.16) depending on the behavior of the function C(x), and we have accord- 

ing to (1.9) and (3.3) 

13.41 

Analogously, by using the results in /8/, the quasiperiodic Hilbert problem for a plane 

with slits on therealaxis can be solved. 

4. Pressure of a system of stamps on an elastic half-plane under limit 
friction conditions. We examine thequasiperiodicproblem of the pressure on an elastic 

half-plane ~(0 of a system of stamps, exactly as in Sect.2, but under limit friction con- 

ditions on the line of contact. In the notation of Sect.2, the boundary conditions of this 

problem have the form 
v (5) = Q (5) -t r(x). (TX, + P$J (x) =G, 5 E z. (4.1) 

(U” - iz,,) (x) = 0, x E L’ 

Here Ip /is the friction coefficient, the real function g(x)governing the shape of the 

stamp belongs to the class H, or NM. r(5) = rknr x E Lk,? , and rh are real constants. 

We construct the solution in the form (2.2). According to /S/, the function F(z) = (i + 

P) @I (2) is a solution of the Hilbert problem (3.1), where 

a (2) = 4 (1 - v), b (z) = 2p (1 - 2v), c (5) = - &I (1 + p*)q’ (x), x E L (Lz.21 

a(z) = 0, b(z) = 1, C(J) ==0, ZEL’ 

According to (3.3) and (1.141, we obtain for the appropriate Riemann problem 
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(4.3) 

tl = n-l arctg [p (1 - 2v) (2 - 2v)+] 

The function m(z) is expressed by (1.10) (or (l.ll), (1.13)),(3.3), (4.21, (4.3), the 

function F (z) by (3. 2) , @I (z) = (i + p)-‘F (2). 
We find the coefficients C,. From condition (4.1) we obtain 

%.n+1 

S v'(t)dt=q(ak,,+l)-q((bk,) +rk,n+l--r,s,); n=l,...,N (4.4) 

%I 

Taking into account that 3(z) = o(z) outside the stamp, we obtain from (2.2) 

u' (5) = - (1 - v) p-'(1 + p*)-' [0 (5) + @,I (4.5) 

Substituting (4.5) into (4.41, we obtain Nconditions for each k=O,&l,... 

%I+1 
2(1-v) 

s P('+P? b Rem@ _;- 2sk) dt=q@,,) -q(ak,n+J + rk,, - rx, n+1 
" 

(4.6) 

that generate a system of Nintegral equations in C,(q) after transformation with respect to 
k. However, it can be noted that conditions (4.6) will be satisfied if Re@((t + 2nk) there- 

in is replaced by the function Q((t + 2nk) itself. Later, applying the Fourier transform, 
we obtain a system of Nalgebraic equations with the unknowns C*(cp) 

%+1 
2(1-v) '. 
CL (' + P') s 0, (t) dt=q, (b,) -q* (G+~) + ren - r,,n+l; 

b, 
n=l,.. ;.N 

Analogously to Sect.2 in problem a), here we must set r*,,= 0, the magnitudes of the 
principal vectors Yb.,, are found from the equilibrium conditions 

b* 

S uy (.z + 2nk) dx = Y kn; n==l,... ,N, k=O,_tl,... (4.8) 
% 

The equalities (4.7) in problem b) serve to calculate the transform of the relative 
vertical displacements of the stamps r*n. The coefficients C, are determined by the con- 
ditions (4.8). By virtue of (2.2) and (4.11, we have in the interval (a,,, &,) 

uy (2) = - (1 + p")-' Im 10, (3~) - W(X)] (4.9) 

Substituting (4.9) into (4.8), and using the same method as in deriving (4.71, we ob- 
tain the system (n = l,...,N) 

3 
& i p*+(t) - o*- @)I dt = Y *n (4.10) 

an 

Despite the fact that not necessary but sufficient conditions (4.7) and (4.10) are used 
in the solutions constructed, they will be general if they are unique under conditions of 
damping at infinity. It should be noted that the Kirchhoff uniqueness theorem does not in- 
clude the limit friction conditions by eliminating the case 
(4.3)- (4.10) are simplified somewhat (for instance, 

p = 0. For p = 0 the formulas 
8 = 0) and correspond to the case of 

absence of contact friction. 
in paper /lo/. 

Periodic problems for p = 0 are solved in /9/, and for p#O 

5. Mixed boundary value problem of analytic function theory for a half- 
plane. Find the function F(z) analytic for y>O by means of the boundary condition 

Re F(z) = q(z), z EL; Im F(x) = h(x), XEL (5.1) 

where the functions q(x) and h(s)independently satisfy the conditions H, or HOi. 
This problem is a particular case of the Hilbert problem (3.1) for c(z)=q(z) onL and a(z)=O,b(z)=f,c(z)=h(z) on L'. 

a(z)=l,b(z)=O, 
Hence its solution which decreases 
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at infinity and is integrable at the points (lli*, bhnr is expressed by (3.21 ano :l.lu: ,,r 
(1.13), where g(z) = 2q(s) on L and g(r) = U(t) on L'. In particular, 
bounded at all points b,, is sought, 

if the solut:on is'(;) 
then the function X(z) is evaluated by means of 'l.~:,:,, 

where y = 0 since G (5) = -1 on L, G (5) = 1 on L’, here x = 0, and there are no arbitr- 
ary constants C,(V). If singularities are allowable at both ends of the segments L by the 
condition of the problem, then (1.141 must be used, and v =0,x = I?‘. The formulas mentioned 
can be considered a generalization of the Keldysh-Sedov formulas /3/. 

6. Dirichlet problem for a plane with slits. The following modiflcatior;ofth%s 
problem plays a major role in hydromechanics and elasticity theory. Construct il function 

y (2) analytic and single-valued in a plane z slit in a set of intervals L by means of given 

values of its real part 

He 'k‘*(I) =q+@), .z EL, q* (4 E II‘?,, If, (6.1) 

Following /1,7/, we write the solution in the form 

'r(z) = F(z) + Q (z) (6.2) 

where F(Z) is the solution of the mixed problem (5.1) for IL (.z) = 0, q (z) = ‘!? [y’ (2) -L ‘I- (x)1, 
and 8(z) is the solution of the problem of the jump 

W(S) - 9- (z) = (1) (z), 0 (z) = q+(z) - q- [z), I E L (61. 3) 

with the additional condition s2 (2) = - G(z). 
According to Sect.5, the function F(z) is expressed by (3.2), (1.10) or (1.131, where 

g, (x)=Q*+@) + q,-(r), ~E(G,, b,); (6.4) 

g* (5) =O. .r Elb", Gill 

For JJ = 0 the function X(z) is expressed by (1.14) or (1.15) to which x-N;?r x=0 

corresponds. 
By virtue of (1.101, the solution of the problem (6.3) has the form 

The solution of the Dirichlet problem, as a problem to determine a harmonic function 

from its values on the edges of slits, is constructed on the basis of the solution obtained 

by the methods in /7/ and /ll/, As is known, this function is generally the real part of a 

multivalued analytic function. 

7. Deformation of a composite elastic plane weakened by a system of closed 
slits. Let an elastic plane z be glued from the half-planes y>O and y< 0 with differ- 

ent elastic characteristics, and weakened on the interface of the materials by a system of L 

arbitrarily loaded closed slits. This quasiperiodic problem for a homogeneous plane and the 

corresponding pericdic problem for a composite plane are solved in /2/ and /12/. 

We write down the boundary conditions on L (h*(x) E H,, HM) 

T,,(ziiO)=h*(z), u(s$-iO)=u(s--0) (7.1) 

a!,(~ + i0) = (5” (.z - i 0) 

Considering total adhesion of the half-planes to hold on L',we construct the solution 

of the problem satisfying this condition in the A.A. Khrapkov form /13/ 

2pj (U + iU)' (2) = Cj[XjK (2) - (2 - Z) K' (Z)] - 6jK (1) + 17.2) 
fzj+?. IXjM (z) + nf (Z) - (z - Z) M’ (z)l 

xj = 3 - 4vj, 6, = ca, 6, = c,, Cl = (Xl + 

c2 = (1 + m7"J1, c == m (1 + x_) c_ = i)lt;-rx 9 0, . 17 m == {1$2--’ 

where the subscript j = 1 (j = 2) denotes the elastic characteristics of the half-planes Y ;- 

0 (y .< 0). 
Substituting (7.2) into (7.11, we obtain the following boundary value problems for the 

functions M(z) and ‘u(z) 

M+(z?z)-M-(z)=ip(s),sEL (7.31 



Re I+ (5) = q* (I), z E L; Y (z) = --i (cl + 4 K (4 
p (5) = -A Ih+ (2) - h-(z)], A = (~1 f %)-I 

q+ (2) = c*r (I) + q (z), q- (2) = - cc (4 + q (4 

q (4 = - A [c&+(s) + c,h- (x)1, r(z) = mA (~1x2 - 1) x]k+ (2) - h-(r)] 

The solution of the problem of the jump (7.3) has the form 
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(7.4) 

(7.5) 

The solution of the Dirichlet problem (7.4) has the form (6.2), where the function Q(z) 

is determined by (6.5), (6.6), (6.31, the function F(z) by (3.21, (l.lO), (1.13), the functions 

g,(s) and X(z) have the form (6.4) and (1.14) for y = 0, x = N. 

We find the coefficients C,. We write the conditions for uniqueness of the displace- 

ments u(z) during traversal of the slits 

bh-r, 

5 [u’(t+iO)-u’(t-iO)]dt==O; n=l,.,., A’: k=@.jl.... 

ah 

Substituting (7.2) here, we obtain for the same k and n 

bkn 

s Re (m (~1x2 - 1) [M+ (t) - W(f)] + K+ (t) - K- (t)} dt = 0 (7.6) 

Since the function ?ii'(z) has a pure imaginary jump on L according to (7.3), and the coef- 

ficients xj,uj are real, it follows from (7.6) 

*kn 

s Re [K+ (t) - K- (t)] dt = 0 

Okn 

We go over to the functions Q(z) and 8(z)in this equation by means of (7.41, (6.2) and 

(3.2). Taking into account that the imaginary part of the jump in the function O(z) is zero 
on L because of (6.31, we obtain 

*kn 

1 Im [Q+(t) - a-(t)] dt = 0 (7.7) 

"h 1, 

To satisfy this condition it is sufficient to write the jump itself in the function @(a) 

instead of the imaginary part of the jump. By applying the transformation (1.3) or (1.12) to 

the new condition, we obtain a system of N equations with the unknowns C,(cp) 

1 [o,+(t)-Q-(t)]dt=O, n=l I..., N (7,8) 

am 

For h*(z)= 0, this system and the problem (7.1) have only a trivial solution. Going 
from (7.7) over to (7.81 and from (1.1) over to (1.6), a foundation can here be given by us- 
ing the Kirchhoff uniqueness theorem. 

1. 

2. 

3. 

4. 

5 . 
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